Ausführung und Einsatzbereich

Die Messgeräte RA 60 und FA 60 arbeiten nach dem Schwebekörperprinzip. Der Einbau in Rohrleitungen erfolgt bei RA 60 mittels Rohrverschraubung, bei FA 60 erfolgt die Montage zwischen Flanschen. Der Messkonus aus Borosilicatglas befindet sich in einer Stahlschutzhülse mit Plexiglassichtfenster.

Die Schwebekörperdurchflussmessgeräte RA 60 und FA 60 eignen sich zur Durchflussmessung von durchsichtigen Flüssigkeiten und Gasen. Jedes Gerät wird für den jeweiligen Kundenbedarf mit einer messstoffspezifischen Skala ausgestattet. RA 60 und FA 60 finden ihre Anwendung z. B. im Anlagenbau oder der Prozesstechnik.

Durch den Einbau von elektrischen Grenzwertschalter, die über den gesamten Messbereich verstellbar sind, lassen sich die Geräte auch als Wächter einsetzen.

Eine genaue Erläuterung der Funktionsweise und des Messprinzips von Schwebekörperdurchflussmessgeräten finden Sie in unseren technischen Unterlagen.

- kalibrierter Messkonus aus **Borosilicatglas**
- Armatur mit Stahlschutzrohr
- Plexiglashalbschale als **Splitterschutz**
- zuverlässig durch einfache **Funktionsweise**
- messstoffspezifische Skala
- optional
 - Grenzwertschalter
 - Analogausgang 4 ... 20 mA
 - explosionsgeschütze Ausführung

Baureihen

RA 60	mit Schraubanschluss
FA 60	mit Flanschanschluss
RA / FA 60-MSK1	mit Grenzwertschalter (Öffner)
RA / FA 60-MSK12	mit Grenzwertschalter (Schließer)
RA / FA 60-MSKW	mit Grenzwertschalter (Wechsler)
RA / FA 60-EM *	mit Analogausgang 4 20 mA *
RA / FA 60 Ex	explosionsgeschützte Ausführung

^{*} nur bei Größen 100 und 110

Technische Daten

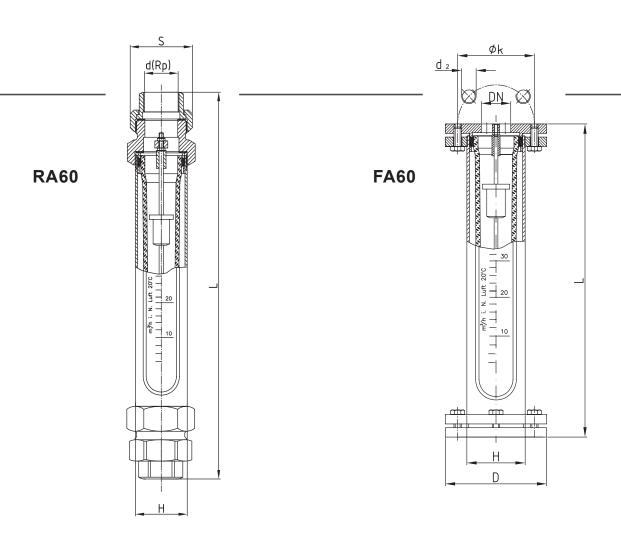
Nenndruckstufe	FA 60: PN 10 bei 20 °C RA 60: PN 10 bei 20 °C
max. Betriebsdruck	siehe Tabelle Messbereiche auf Seite 3
Temperaturbeständigkeit	80 °C, optional 100 °C
max. Umgebungstemperatur	90 °C
Messspanne	1:10
Genauigkeitsklasse Fehlergrenzwert (G) Linearitätsgrenze (qG)	VDE/VDI 3513 Blatt 2 (08/2008) 1,6 % 50 %
Anschluss RA 60	zweiteilige Rohrverschraubung: (Rp) Einlegeteil mit zylindrischem Innengewinde nach DIN EN 10226-1 (ISO 7-1)
Anschluss FA 60	Flansche PN 10 nach DIN EN 1092-1, andere auf Anfrage
Korrosionsschutz	Epoxidharz Pulverlack, verkehrsblau (RAL 5017) glänzend
Korrosionskategorie	C3

Materialien

Schutzhülse	Präzisionsrohr aus Stahl P235
Köpfe RA 60	S355 (Größe 19), EN-GJL-200 (Größe 30-36), Aluguss (ab Größe 43)
Verschraubung	Temperguss verzinkt
Flansche FA 60	S355
Messglas	Borosilicatglas
Splitterschutz	Plexiglas
Dichtungen	Standard: NBR optional: FKM, EPDM
Schwebekörper für Flüssigkeiten ¹⁾	Standard: 1.4571 optional: PVC, PP, PVDF oder PTFE mit Bleikern
Schwebekörper für Gase ¹⁾	Standard: Aluminium eloxal optional: PVC, PP, PTFE, PVDF oder 1.4571
bei Grenzwertschalter ¹⁾	Flüssigkeiten: 1.4571 mit Magnetkern Gase: PVC mit Magnetkern

andere Materielien auf Anfrage

Maße


RA 60					
Größe	Rohrver- schraubung	S	d 1)	L	Н
10	Rp 1/4 Rp 3/8 Rp 1/2	28 32 39	12 16 20	388 390 393	28
19	Rp ½ Rp ¾ Rp 1	39 48 55	20 25 32	405 407 415	45
30	Rp 1 Rp 1 ¼ Rp 1 ½	55 67 74	32 40 50	415 430 436	60
36	Rp 1 ½ Rp 1 ½ Rp 2	67 74 90	40 50 63	430 436 446	75
43	Rp 1 ½ Rp 2 Rp 2 ½ Rp 3	74 90 111 131	50 63 75 90	440 446 460 470	95
100	Rp 2 Rp 2 ½ Rp 3	90 111 131	63 75 90	446 458 470	115
110	Rp 2 ½ Rp 3	111 131	75 90	462 474	133

¹⁾ d bei Klebe- und Schweißmuffen

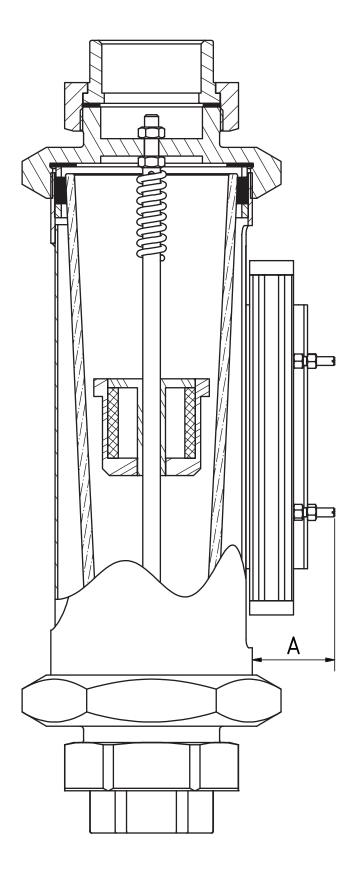
FA 60							
Größe	DN	L	Н	D	k	Schraube Anzahl	n d²
10	10 15 20 25	340	28	90 95 105 115	60 65 75 85	4 4 4 4	M12 M12 M12 M12
19	10 15 20 25	340	45	90 95 105 115	60 65 75 85	4 4 4 4	M12 M12 M12 M12
30	25 32 40	340	60	115 140 150	85 100 110	4 4 4	M12 M16 M16
36	32 40 50	340	75	140 150 165	100 110 125	4 4 4	M16 M16 M16
43	40 50 65	340	95	150 165 185	110 125 145	4 4 4	M16 M16 M16
100	65 80 100	340	115	185 200 220	145 160 180	4 8 8	M16 M16 M16
110	65 80 100	340	133	185 200 220	145 160 180	4 8 8	M16 M16 M16
150	80 ¹⁾ 100 125 150	640	178	220 220 250 285	160 180 210 240	8 8 8	M16 M16 M16 M20
180	150 200	640	219	285 340	240 295	8	M20 M20

¹⁾ Baulänge: 655 mm

¹⁾ Die Schwebekörper sind bei kleinen Größen ungeführt; ab Größe 30 teilweise mit Führungsstange. Auf Anfrage erhalten Sie von uns eine detaillierte Tabelle.

Messbereiche (min. und max. Messbereich; alle Zwischenmessbereiche möglich)

Größe	Messbere H ₂ O	eich			Messber i.N. Luft	eich)			RA 60 Rohrverschraubung	FA 60 Flanschanschluss DN	max. Betriebsdruck bar
10	0,1 15	-	1 150	l/h l/h	0,3 0,25	-	3 2,5	l/h m³/h	Rp ¼ Rp ¾ Rp ½	10 15 20 25	10
19	12 0,12	_	120 1,2	l/h m³/h	0,15 1,6	-	1,5 16	m³/h m³/h	Rp ½ Rp ¾ Rp 1	10 15 20 25	10
30	0,1 0,3	- -	1 3	m³/h m³/h	1,3 3,6	-	13 36	m³/h m³/h	Rp 1 Rp 1¼ Rp 1½	25 32 40	10
36	0,4 0,8	-	4 8	m³/h m³/h	4 8	-	40 80	m³/h m³/h	Rp 1 ½ Rp 1 ½ Rp 2	32 40 50	8
43	0,9 1,6	_	9 16	m³/h m³/h	5 16	-	50 160	m³/h m³/h	Rp 1 ½ Rp 2 Rp 2 ½ Rp 3	40 50 65	8
100	1,6 2	- -	16 20	m³/h m³/h	12 28	- -	120 280	m³/h m³/h	Rp 2 Rp 2 ½ Rp 3	65 80 100	6
110	2,5 3	- -	25 30	m³/h m³/h	14 44	-	140 440	m³/h m³/h	Rp 2 ½ Rp 3	65 80 100	5
150	-				30 100	Ξ	300 1000	m³/h m³/h	_	80 100 125 150	4
180	_					-	300 1500	m³/h m³/h	_	150 200	3


Messbereiche für andere Messstoffe und Betriebsbedingungen erhalten Sie auf Anfrage.

1) i.N.: im Normzustand (0 °C und 1013 mbar abs.)

RA / FA 60-EM

Glasgröße	A
100	47
110	47

Grenzwertschalter MSK1/MSK12/MSKW

Um eine Vorortanzeige mit Überwachungsfunktion zu realisieren, lässt sich das Durchflussmessgerät mit Grenzwertschaltern ausrüsten. Der Grenzwertschalter besteht aus einem Steckergehäuse und einem bistabilen Reedkontakt. Ein in den Schwebekörper integrierter Magnet schaltet diesen Reedkontakt. Der Grenzwertschalter wird in einem Führungsschlitz auf der Rückseite der Schutzhülse geführt und kann über den vollen Messbereich verstellt werden. Bei induktiven oder kapazitiven Belastungen, z. B. durch Schütze oder Magnetventile, können unkontrollierbare Strom- und Spannungsspitzen auftreten. Auch bei Leitungen ab einer gewissen Länge, abhängig von der Geometrie der Leitungen, treten solche Spitzen auf. Daher empfiehlt sich die Verwendung eines zusätzlich lieferbaren Kontaktschutzrelais MSR. Dieses erhöht die Schaltleistung und verhindert das Auftreten von induktiven und kapazitiven Spitzen. Es gewährleistet somit eine lange Lebensdauer der Grenzwertschalter.

Technische Daten der Grenzwertschalter

Ausführung	MSK1	MSK12
Schaltspannung	50 V AC/75 V DC	50 V AC/75 V DC
Schaltstrom	max. 0,5 A	max. 0,5 A
Schaltleistung	max. 10 W/VA	max. 10 W/VA
Spannungsfestigkeit	230 V AC/400 V DC	230 V AC/400 V DC
Temperaturbereich ¹⁾	-20 +90 °C	-20 +90 °C
Schaltfunktion	Öffner, bistabil	Schließer, bistabil
Anschlussbild	1 BN 2 WH	1 BN ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Ausführung	MSKW	
Ausführung Schaltspannung	0 100 V DC	
·		
Schaltspannung	0 100 V DC	
Schaltspannung Schaltstrom	0 100 V DC max. 0,5 A	
Schaltspannung Schaltstrom Schaltleistung	0 100 V DC max. 0,5 A max. 5 W/ VA	
Schaltspannung Schaltstrom Schaltleistung Spannungsfestigkeit	0 100 V DC max. 0,5 A max. 5 W/ VA 200 V DC	

¹⁾ Bitte die Temperaturbeständigkeit des Durchflussmessgerätes beachten.

Linearwegsensor EM

Der auf dem Hall-Prinzip basierende Linearwegsensor liefert ein zur Höhenstellung des Schwebekörpers proportionales Ausgangssignal. Dieses kann in 4 ... 20 mA oder 0 ... 10 V zur Anzeige gebracht werden, um eine Fernanzeige realisieren zu können. Angeschlossen wird der Sensor über den mitgelieferten M12 x 1mm Stecker.

- kompakte Bauform
- sehr hohe Reproduzierbarkeit
- Messbereich Anzeige über LED
- ideal f
 ür die Einbindung in SPS
- Realisierung von Fernübertragungen

Bitte beachten Sie, dass der Sensor eine Blindzone im Bereich von 3,7 mA bis ca. 4 mA besitzt und erst ab ca. 4 mA stabil arbeitet.

Technische Daten Linearwegsensor EM

Messbereich	160 mm
Wiederholgenauigkeit	≤ 0,1 % vom Messbereich ≤ abhängig vom Positionsgeber
Linearitätsabweichung	≤ 1 % v.E.
Temperaturdrift	≤ ± 0,006 %/K
Umgebungstemperatur 1)	-25 +70 °C
Betriebsspannung	15 30 V DC
Leerlaufstrom	≤ 15 mA
Ausgangsfunktion	Vierdraht, Analogausgang
Spannungsausgang → Lastwiderstand	$0 \dots 10 \text{ V}$ $\geq 4.7 \text{ k}\Omega$
Stromausgang → Lastwiderstand	$4 \dots 20 \text{ mA}$ $\leq 0.4 \text{ k}\Omega$
Abtastrate	200 Hz
Anschluss	Steckverbinder, M12 x 1
Schutzart	IP67
Betriebsspannungsanzeige	LED, grün
Messbereichsanzeige	LED, gelb, Positionsgeber im Erfassungsbereich
Anschlussbild	1 BN + 4 BK - 1 1 U - 3 BU

¹⁾ Entscheidend ist die Temperaturbeständigkeit des Durchflussmessgerätes

Noti	zen

Notizen

Niederspannungsrichtlinie

Oberhalb 50 V AC/75 V DC unterliegen die Grenzwertschalter der EG-Niederspannungsrichtlinie. Der Anwender muss ihren Einsatz entsprechend prüfen.

Bestimmungsgemäße Verwendung

Der Anwender verantwortet die Beurteilung hinsichtlich der Eignung der Durchflussmessgeräte für seinen Einsatzfall, der bestimmungsgemäßen Verwendung und der Materialverträglichkeit hinsichtlich des von ihm gefahrenen Mediums.

Der Hersteller haftet nicht für Schäden, die aus dem unsachgemäßen oder nicht bestimmungsgemäßen Einsatz der Geräte entstehen.

Druckstöße können zu Glasbruch führen. Diese sind generell zu vermeiden. Die im Datenblatt angegebenen Grenzwerte sind einzuhalten. Genauere Informationen entnehmen Sie den Einbauempfehlungen der Richtlinie VDI/VDE 3513 Blatt 3.

Die Geräte der Firma **Kirchner und Tochter** sind nach den einschlägigen EG CE Richtlinien geprüft. Auf Anfrage erhalten Sie eine entsprechende Konformitätserklärung. Änderungen ohne vorherige Ankündigung bleiben vorbehalten. Die aktuell gültige Version unserer Dokumentation finden Sie unter www.kt-flow.de.

Das **Kirchner und Tochter** QM-System ist nach DIN EN ISO 9001:2015 zertifiziert. Es wird eine systematische Qualitätsverbesserung in ständiger Anpassung an die immer höher werdenden Anforderungen betrieben.